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ABSTRACT
Relational query processing is an ideal candidate for serverless com-
putation with its stateless, idempotent, and short-lived properties.
However, current serverless offerings for query processing neither
provide millisecond-based pricing nor allow users to optimize the
cost of their queries. To have reasonable trade offs for the cost of
their queries, users are limited to using traditional serverful ap-
proaches. We demonstrate that serverless offerings can improve
query execution times by up to 50% with no significant affect on the
cost. To be able to support serverless offerings and give users the
benefits of serverless offerings, we introduce a model that can esti-
mate the query execution time given a trace of a previous execution
of the query.
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• Information systems→Query planning;MapReduce-based
systems.
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1 INTRODUCTION
Cloud computing achieved widespread adoption over the past
decade, which has freed users from the burden of maintaining
their own clusters and allowed them to provision their clusters
on-demand. Similar to cloud computing, serverless computation has
freed users from even provisioning their own clusters and allows
them to achieve "web-scale" without a thought for how to optimally
provision their clusters. As serverless computation gains momen-
tum, service providers are introducing new services that leverage
serverless, such as AWS Athena [2] and GCP BigQuery [4], which
allow users to query their remote object stores without having to
provision their own compute clusters.

Unlike newer serverless offerings (e.g., AWS Lambda [3], GCP
Function [5]) that offer millisecond-based pricing, these services
are priced on the amount of data accessed by the query, which is
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Query Wall-Clock Time Cost
2 SELECT
statements 2 min 114 GB * $5

1TB
= 0.72

1 CROSS PRODUCT
statements 30+ min 114 GB * $5

1TB
= 0.72

Table 1: Run time and cost of two sets of statements with
GCP BigQuery. The fact that the two statements cost the
same amount of money but have such drastically different
run times is concerning.

not optimal for the service provider or the user. The only way for
the user to reduce the amount of data accessed is to approximate
queries, which is not always desirable. Furthermore, pricing based
on the amount of data accessed does not reflect the actual cost,
which is the product of the wall-clock time, the cost of the compute
node used, and the number of compute nodes used. Thus, the user
pay the same amount for running two select query (e.g., SELECT
... FROM TABLE_1 and SELECT ... FROM TABLE_2) and one join
query (e.g., SELECT ... FROM TABLE_1, TABLE_2), as shown in
table 1.

Our key observation is that a pricing scheme based on wall-clock
time will allow the service provider to have a fairer pricing scheme.
This will also allow users to trade off run time for cost.

Although there are existing systems [7, 13, 16] that can, given a
budget for run time or dollar cost, calculate the optimal provisioned
cluster that optimizes for the other, these systems work only in a
fixed-provisioned cluster throughout the query.

Additionally, there is an opportunity to expand the Pareto curve
with serverless offerings. Although there are limits on how far
the time-cost trade off curve can be pushed due to the maximum
degrees of parallelism for the minimum run time and the optimal
degrees of parallelism for minimum cost, serverless is able to find
significant improvements in the run time and cost in other parts
of the Pareto curve. For instance, figure 1 shows the stages of the
execution graph of a Spark query. It is clear that there are three
distinct stages of the Spark query that can benefit from a different
number of nodes at each stage.

We propose a model based on Spark [19] that provides the op-
timal time-dollar cost tradeoff to the user and show preliminary
results of a 50% run time reduction with only a 2% increase in cost
from using serverless computation.

In order to develop on Spark, which is not serverless, we build
our model based on a simulated version of Spark that is serverless,
or Serverless Spark. In Serverless Spark, we assume that (i) we al-
ways have access to nodes ready to load data and execute tasks
without having to warm up the JVM and (ii) we can have multiple
Spark drivers running simultaneously to execute one query.We also
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Figure 1: Spark execution graph for a sample TPC-DS query.
Clearly, there are opportunities for large performance gains
and cost savings with elasticity.

assume that the latency to launch new Spark drivers with the cor-
rect number of nodes attached is 125ms. These assumptions follow
the standard of many current cloud services (e.g., AWS Lambda [3],
GCP Function [5]) and, thus, are reasonable assumptions to make
on cloud service providers.

Our contributions in this paper consist of
• A Spark simulator that can estimate the run time and cost
of a query given a trace of a previous execution (section 2).
• Determine the time-cost trade off curve of a query (sec-
tion 3.1.1).
• Optimize the run time or cost of a query given a cost or run
time budget (section 3.1.2).

The rest of the paper is organized with discussion of the Spark
Simulator in section 2, discussion of the Spark Serverless Simulator
in section 3, presentation of our current results in section 4, related
work in section 5, and future work in section 6.

2 SPARK SIMULATOR
Our Spark simulator simulates a simplified version of the Spark task
scheduler. In Spark, each query is broken up into stages that form a
DAG, such as the one shown in figure 1. Within each of these Spark
stages, there are a number of tasks that can be executed indepen-
dently of each other. With this understanding of Spark queries, we
make a number of assumptions (section 2.1) to simulate the query
on any serverless cluster provisioning (section 2.2). Because we are
simulating on a trace of a previous execution, this leads to a number
of sources of uncertainty, which we will explore in section 2.3.

2.1 Heuristics
Though the execution of a real Spark query is highly complex, we
are able to get relatively accurate estimates of the query execution
times based on a simplified version of the Spark FIFO task scheduler.
Our simplified version, however, makes use of a number of heuris-
tics. These heuristics allow us to estimate the parallel execution of
different stages (section 2.1.1), the number of tasks (section 2.1.2),
the size of each task (section 2.1.3), and the run time of each task
(section 2.1.4).

2.1.1 Parallel Stages. Spark’s ability to run stages in parallel come
from the fact that the code used to implement the SQL engine
is multi-threaded. To avoid simulating the exact code of Spark’s
SQL engine, we create a task graph, such as figure 1. Using the
task graph, we use a rule-based model to simulate the Spark stage
execution.

Because of Spark’s FIFO task scheduler, we can use the heuristic
that every stage launches all of its tasks before any other stage can
begin launching tasks. Formally, given a query Q a set of stages
S = {s1, · · · , sm }. Thus, stage si ∈ S , at any point, if stage si is
launching new tasks, then stage sj where i , j cannot be launching
new tasks.

Additionally, every stage has to wait for its parent stages to finish,
which when all of the stage’s tasks finish running. Thus, there are
instances when there are nodes free, but the next stage in FIFO
order is blocked by its parent. In such cases, we begin the next stage
that is not blocked by its parents or wait until the parent stages
have finished. Thus, given a stage si with a parent stage si−1 and
a stage si+1 such that there is no path in the stage DAG from si−1
to si+1, if si−1 still has tasks running, then stage si cannot launch
any tasks. However, stage si+1 can run even though it is after si
in terms of FIFO order, assuming its parent stages have completed.
When si+1 has completed, if si−1 has yet to complete, then si must
wait until si−1 has completed before si can begin execution of any
tasks.

2.1.2 Task Count. Although the number of tasks for each Spark
stage is dependent on a number of factors, we can ignore a number
of those factors due to the fact that we have the trace of a previous
execution of the query. Instead we focus on the fact that there is
a minimum and maximum number of tasks for a particular stage
regardless of the number of nodes in the cluster. Thus, we estimate
the number of tasks for a given stage by comparing the number of
tasks in the trace of the previous execution, the number of nodes
in the previous execution, and the number of nodes in the cluster
for which we are predicting the query execution time. Thus, if the
number of tasks the trace is not equal to the number of nodes used
when collecting the trace, then we set the number of tasks to be
the number of tasks from the trace. We also set the number of tasks
to the number of nodes in the cluster when the number of nodes
exceeds the number of tasks. Otherwise, we estimate the number
of tasks to be equal to the number of nodes in the cluster for which
we are estimating the query execution time.

2.1.3 Task Size. While there is some variability in the amount of
data that each task is given, this variability is small enough such
that it has a negligible effect on the run time of the query. Thus,
for our model, we ignore the fact that there is any variability in the
size of data executed per task. As a result, we set the amount of
data equal to the median amount of data that the task is given.

In order to account for the fact that the total data size should
not change when the number of tasks change, we use the heuristic
that the task size is proportional to the number of tasks, in both the
previous and estimated execution, to account for the change in the
number of tasks. In doing so, we ensure that the total amount of
data that each stage intakes is the same. Formally, each stage si has
a set of tasks Ti = {τ 1, · · · , τ t } Thus, if the previous execution had
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te tasks and median amount of data handled for each task τ (p,i)

was τ̂ (p,i)b , then the estimated execution, with te tasks, has task

τ (e ,i) handles τ (e ,i)b bytes of data given by

τ̂
(e ,i)
b =

tp

te
τ̂
(p,i)
b (1)

2.1.4 Task Run Time. To simplify our model of the task execution
times, we model the task durations of the same stage from a log
Gamma distribution. We use the log Gamma distribution because
of its nonnegativity and long and heavy tail. Although the Gamma
distribution also has these properties, the log Gamma distribution
can accurately represent normally distributed data.

We account for the fact that the run times are dependent on
the data size by normalizing the task run times by the task size
before fitting it to a log Gamma distribution. In doing so, we ensure
that we isolate the variations in run time from the amount of data.
Formally, given a stage si with task τ j ∈ T , each task has a duration
of τ jd and takes in τ jb bytes of data. We assume that

t id

t ib
∼ LoдGamma(k, θ ) (2)

To get the run time of a task in a particular cluster provision, we
simply obtain the estimated task size and multiply it by a sample
from the above distribution.

We also currently do not model the task scheduling time, due
to the fact that the scheduling time is negligible given that the
amount of data handled by each task is reasonable. Additionally,
we assume that task run times capture network latencies, so we do
not specifically handle these latencies.

2.2 Simulation
Using the above assumptions, we are able to simulate the execution
of a query in Spark outlined in algorithm 1.

To do so, we iterate through the stages in an order based off of
the heuristics from section 2.1. For each stage, simulate the task
durations (line 16 - line 22). To do so, we first estimate the number
of tasks per stage, the amount of data for each stage, and we fit a
log Gamma distribution to the task durations normalized by the
amount of data for each task. To fit the log Gamma distribution to
the data collected from the previous execution, we use maximum
likelihood estimation in order to determine the parameters to the
distribution. Then, we can determine the task durations by sampling
the log Gamma distribution for the ratio of the task duration for
each byte handled by the task. We then recover the task duration
by multiplying the ratio (i.e., the sampled valued) by the number of
bytes handled by the task.

With the task durations, we simulate a cluster ofne nodes (line 23
- line 25). To do so, we create a min-heap of size ne that will hold
the finish times of the ne tasks that we simulate to be running in
parallel. Thus, time only advances when we have to wait for a task
to complete.

Using the algorithm that we described, we are able to estimate
the run time of the entire query. The estimate run time of the
entire query is the time when all tasks have been completed in the
simulated cluster.

Algorithm 1 Spark Simulator
1: Given: Stages in query trace, S
2: Given: Number of nodes to estimate, ne
3:
4: cluster ← minHeap(ne )
5: time ← 0
6: i ← 0
7: while i < m do
8: begin
9: if noneCanRun() then
10: time ← cluster .max()
11: cluster .empty()
12: if canRun(si ) then
13: i ← i + 1
14: continue
15: S .pop(i)
16: t̂i ← estimateTaskCount(ne ,Q)
17: τ̂ ib ← estimateTaskSize(ne ,Q)
18: model ←logGamma.MLE_fit(si )
19: for j = 1 to t̂i do
20: begin
21: r ←model .sample()
22: τ̂d ← τ̂b ∗ r
23: if cluster .full then
24: time ← cluster .popAllMin()
25: cluster .insert(time + τ̂

j
d )

26: end
27: i ← min(S)
28: end
29: time ← cluster .max()

2.3 Sources of Uncertainty
Due to the fact that the trace of a previous execution is a sample
of the task durations, the numerous heuristics we are using, and
the simulation of the task durations, we have three sources of
uncertainty that need to be captured within the Spark Simulator:
(1) σs , the sample uncertainty, in section 2.3.1 (2) σh , the heuristic
uncertainty, in section 2.3.2, and (3) σe , the estimate uncertainty, in
section 2.3.3. In order to capture these uncertainties, we let σs ,σh,
and σe be the sample task duration standard deviation, the standard
deviation of the task duration using different heuristics, and the
standard devation of the estimates. To get the total uncertainty, σ ,
we sum together the different sources of uncertainties:

σ = 3(αsσs + αhσh + αeσe ) (3)

where αs ,αh, and αe are used to adjust the weights of the different
sources of uncertainty. Furthermore, we avoid scaling the overall
uncertainty by an arbitrary factor by enforcing

αs + αh + αe = 1

Currently, we set αs = αh = αe =
1
3 . We discuss the sources of

these uncertainties and how we calculate their standard deviations
below.

2.3.1 Sample Uncertainty. The sample uncertainty comes from the
fact that the task run time is not constant after normalizing for
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the task data size. This comes from the fact that the run time is
dependent on the values of the data and not just the size itself. Ad-
ditionally, there is variability in the cluster and task execution, such
as the distance between the nodes in the cluster and the effects of
multi-tenancy on the nodes. As a result, there is a noninsignficiant
variability in the task run times even after normalizing for the data
size.

Although calculating the standard deviation of the task dura-
tions (normalized by the task size) for stage si from the previous
execution, σ(s ,si ), is trivial, the difficulty lies in using these σ(s ,si )’s
to calculate its effect on the overall query. This difficulty arises from
the fact that, though stages launch all of its tasks at once, the tasks
are not guaranteed to all finish at the same time. While we could
approximate that they all finish at around the same time, we are
unable to do so due to straggler tasks. Straggler tasks are significant
due to the fact that stages cannot finish until all tasks, including
straggler tasks, have finished.

However, we are able to upper bound the uncertainty, repre-
sented by the standard deviation. The upper bound of the uncer-
tainty comes occurs if there was only one node, which causes
everything to run sequentially. Thus, we use this upper bound and
let σs be

σs =
m∑
i=1

t̂ ic τ̂
i
bσ(s ,si ) (4)

where t̂ ic is the estimated number of tasks for stage i using ne nodes
and τ̂ ib is the estimated task size for stage i .

2.3.2 Heuristic Uncertainty. The heuristic uncertainty comes from
the fact that we are using heuristics rather than actually determin-
ing the task count, task size, and task durations. Thus, the heuristic
uncertainty is calculated using

σh = σ(h,c) + σ(h,s) + σ(h,d ) (5)

where σ(h,c) is the uncertainty from the task count heuristics, σ(h,s)
is the uncertainty from the task size heuristics, and σ(h,d ) is the
uncertainty from the task duration heuristics.
Task Count Uncertainty. The uncertainty from the task count heuris-
tics comes from the fact that, even though our heuristic will scale
the number of tasks with the number of nodes when the task count
is equal to the node count in the previous execution, this will not
always be the case due the fact that there is a minimum and maxi-
mum task count for each stage. This minimum and maximum task
count is reasonable as it corresponds to the minimum and maxi-
mum degree of parallelism. Though the minimum and maximum
task count is dependent on the amount of data for each task, the
amount of data for the minimum and maximum task count is also
dependent on a number of other factors, which we do not consider.
Thus, our current approach results in an uncertainty on the task
count.

To calculate the uncertainty, we calculate the query run time
deviation from our current estimate. Similar to the sample uncer-
tainty, we are unable to calculate the uncertainty for our estimate
number of nodes exactly. Instead, we are forced to use the upper
bound of the uncertainty, which considers the case where there is
only one node and every thing runs serially. Thus, the “standard

deviation” of the task count1 is

σ(h,c) =
m∑
i=1

1

t
(p,i)
c − t

(e ,i)
c

t (p ,i )c∑
t=t (e ,i )c

(tc )(
t
(e ,i)
c
tc

τ̂ ib )r̂i−(t
(e ,i)
c )(τ̂ ib )r̂i (6)

where t (e ,i)c is the estimated number of tasks, t (p,i)c is the number
of tasks in the previous execution trace, and r̂i is the largest ratio
of task duration to task size for stage i in the previous execution
trace.
Task Size Uncertainty. The task size heuristic results in uncertainty
due to the fact that our heuristic uses the median task size while
the task size varies in actual execution. Although, for stage i , the
variability in the task size in the previous execution trace, σ(h,s ,Ti )
can be easily calculated, we are still forced to estimate the upper
bound uncertainty, which occurs when we run the query serially
on one node.

To calculate the standard deviation of the task size, we use the
following

σ(h,s) =
m∑
i=1

t̂ icσ(h,s ,Ti )r̂i (7)

Task Duration Uncertainty. We, also, have to consider the uncer-
tainty that comes from the task durations. This uncertainty comes
from the fact that the task durations do not exactly follow the log
Gamma distribution, even after we normalize it by the task size.

To calculate the uncertainty of the task durations, we cannot
simply use the variance of the log Gamma distribution and, since
we are using a maximum likelihood estimation, we do not have an
uncertainty from the fitting. Instead, for the uncertainty of stage i ,
we calculate the difference between a sample of size t ic of the fitted
log Gamma distribution and the actual task execution duration val-
ues, normalized by the task size. Similar to the above uncertainties,
we calculate the upper bound of the uncertainty by calculating the
uncertainty if we were executing only on one node sequentially.
Thus, given ∀i ∈ [1,m] ∀j ∈ [1, t ic ], d(i , j) ∼ LoдGamma(k, θ ), the
uncertainty is

σ(h,d ) =
m∑
i=1

t̂ ic τ̂
i
b

t ic∑
j=1

d(i , j) −
τ
(i , j)
d

τ
(i , j)
b

(8)

where τ (i , j)d is the duration of task j from stage i of the previous

execution trace and τ
(i , j)
b is the size of task j from stage i of the

previous execution trace.

2.3.3 Estimate Uncertainty. Since we are simulating the task du-
rations based on a log Gamma distribution, we are introducing
uncertainty from the simulations. Thus, we have to account for this
uncertainty in our calculations.

To calculate this uncertainty, we need to run the entire task
duration model more than once to calculate the standard deviation
of the task durations σ(e ,si ) for stage i . Although this uncertainty
is from the simulations, we still calculate the upper bound of the

1The standard deviation in equation 6 is when the estimated task count is less than
the task count in the previous execution trace. If the estimated task count is greater
than the task count in the previous execution trace, then we switch the estimated task
count with the task count in the previous execution trace and vice-versa.
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uncertainty by calculating the uncertainty if we were executing
only on one node sequentially. Thus,

σs =
m∑
i=1

t̂ ic τ̂
i
bσ(e ,si ) (9)

Unlike the other uncertainties, we are able to control the size
of the estimate uncertainty through repeating the Spark Simulator.
However, to ensure that the simulation time does not exceed the
actual query execution time while simultaneously ensuring that the
estimate uncertainty is small enough, we run the Spark Simulator
10 times for each cluster configuration. In doing so, we find that
the estimate uncertainty is small relative to the other uncertainties
and that the Spark Simulation time is still insignificant relative to
the query execution time.

3 SERVERLESS SPARK SIMULATOR
In section 2, we estimated the run time of Spark queries under
fixed sized cluster provisions. Although estimating the run times is
necessary, it has already been done before [7, 16] In this section,
we focus on how we can use query and stage run times of the Spark
Simulator from section 2 to (i) determine the run times of the query
in a serverless setting in section 3.1, (ii) estimate out the time-cost
trade off curve in section 3.1, (iii) automatically determine a cluster
provisioning given a budget in section 3.1, and (iv) automatically
determine the next fixed cluster provisioning to run to improve
the error bounds of the time-cost trade off curve in section 3.2. We
note that some of the methods we describe below is what we are
planning to do and, as a result, have no results as they have yet to
be implemented.

3.1 Offline Simulator
For the offline simulator, there are two possible outputs: (i) a time-
cost trade off curve that gives the time-cost trade off of the model
with accompanying cluster configurations at every point in sec-
tion 3.1.1 and (ii) a cluster configuration with the optimized wall-
clock time or cost given a cost or wall-clock time budget, respec-
tively, in section 3.1.2. Although the second output is trivial given
a time-cost trade off curve, we can reduce the amount of computa-
tion necessary to produce one optimized cluster configuration in
comparison to finding the entire time-cost trade off space.

3.1.1 Time-Cost Trade Off Curve. To calculate the time-cost trade
off curve, we have to determine (i) which groups of stages that
are executed in parallel, (ii) the fixed cluster configuration query
execution times, and (iii) the dynamic cluster configuration query
execution times. Computing these values, with the help of heuristics,
allows us to compute the relevant parts of the time-cost trade off
curve. Below we only discuss how we calculate the run times as
the cost of the query is the product of the run time, the number of
nodes used, and the cost of each node.
Parallel Stages. It is necessary to determine which stages can be
executed in parallel because we currently do not make use of the
fact that we can have multiple Spark clusters. Currently, we use
the heuristic that if we have a large enough Spark cluster for each
group of stages that can be run in parallel, then we can run all of
the tasks of those parallel stages in parallel. Thus, we can get most

of the benefits of multiple drivers without actually using multiple
drivers. We discuss more about the impacts of this in section 6.

To determine which stages can be executed in parallel, given
a large enough cluster size, we go through the stage execution
graph, such as figure 1, and determine which stages have to wait
for another stage to finish before it can begin execution. Thus,
these stages represent the beginning of a new group of parallel
stages. Formally, there is a set of sets G such that ∀дi ∈ G, дi =
{s1, · · · , sli }, where li is the number of stages in дi and ∀sj ∈ дi , sj
can run given all stages in дk have completed, if j > k and no stage
in дk can run, if j < k .
Fixed Cluster Configurations. First, we need to determine our lim-
its on the number of nodes that we can and should use. This is
important due to the fact that, under the serverless computation
regime, we can, in theory, use millions of nodes at any given point.
However, it is infeasible to compute the time cost trade off curve
for anywhere from one to millions of nodes.

Thus, at least for the fixed cluster configurations, we only con-
sider the number of nodes in the range of where the entire data set
can fit in the cumulative memory of the nodes, nmin , to nmax =

10nmin . If during the dynamic cluster configuration we need larger
clusters, then we increase nmax as needed. However, we will never
decrease the minimum number of nodes to below nmin to avoid
the penalty of swapping to disk.

Rather than calculating all possible fixed cluster configurations
from nmin to nmax , we instead calculate the cluster configurations
of N = knmin∀k ∈ [1, 10]. Thus, the number of cluster configura-
tions that we have to calculate is constant rather than linear with
the number of nmin . Then, we simply use the Spark Simulator to
get the query run times for fixed cluster sizes ne ∈ N .
Dynamic Cluster Configuration. Rather than calculating the run
time of the entire query under a dynamic cluster configuration,
we calculate the run time of the groups of stages that can be run
in parallel, G. Thus, for each group дi ∈ G, we first determine
the maximum degree of parallelism for дi by calculating the total
number of tasks in дi as such

mi
t =

li∑
j=1

t ic (10)

Then, we calculate the run times of дi from nmin tomi
t in steps of

nmin (i.e., we calculate the run time ofдi withnmin, 2nmin, · · · ,m
i
t ).

For all the estimates with node count less than nmax , we can use
the results from the fixed cluster calculations. For estimates with
node count greater than nmax (i.e., ne > nmax ), we calculate the
fixed cluster configuration run time of ne for the entire query as
well as the run time for дi .

After computing the run times of all дi , we can simply do a
combinatorial addition starting with the mid-sized cluster config-
urations. We begin from the middle and expand out so that, once
we reach a time or cost greater than the fixed cluster configuration
value, we can stop searching.

3.1.2 Optimized Given Budget. To optimize for a given budget, we
can formulate it as a dynamic programming problem. However,
before we can do so, we need to calculate the fixed cluster run
times. We do so using the same way that we did so in section 3.1.1.
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Algorithm 2Minimize cost given time budget
1: Given:Matrix of costs of running the query onn different fixed

cluster configurations grouped bym groups of stages that can
be executed in parallel, C ∈ Rn×m

2: Given:Matrix of run times of running the query on n different
fixed cluster configurations grouped bym groups of stages that
can be executed in parallel, T ∈ Rn×m

3: Given: Maximum amount of time to execute query, tmax > 0
4:
5: cost[n + 1][m + 1] ← 0
6: time[n + 1][m + 1] ← 0
7: for i = 1 to n + 1 do
8: begin
9: for j = 1 tom + 1 do
10: begin
11: if cost[i−1][j]+C[i−1][j] >= cost[i][j−1]+C[i][j−1]

then
12: if time[i][j − 1] +T [i][j − 1] > tmax then
13: cost[i][j] ← ∞
14: else
15: cost[i][j] = cost[i][j − 1] +C[i][j − 1]
16: time[i][j] ← time[i][j − 1] +T [i][j − 1]
17: if cost[i − 1][j]+C[i − 1][j] < cost[i][j − 1]+C[i][j − 1]

then
18: if time[i − 1][j] +T [i − 1][j] > tmax then
19: cost[i][j] ← ∞
20: else
21: cost[i][j] = cost[i − 1][j] +C[i − 1][j]
22: time[i][j] ← time[i − 1][j] +T [i − 1][j]
23: end
24: end

With the fixed cluster query run times, we break up the run times
into the run times of the groups of parallel stages.

Then, we can solve for the minimum run time or cost, given a
cost or run time budget, respectively, using dynamic programming,
since this can be reduced to the Knapsack problem2. Without loss
of generality, we formulate the rest of the problem if we were given
a run time budget and wanted to minimize cost. We can extend this
solution to if we were given a cost budget and wanted to minimize
run time by switching run time with cost and vice-versa.

We begin by setting up amatrix of run times and amatrix of costs
with the columns representing different groups of parallel stages
and the rows representing different number of nodes in the fixed
cluster. Then, we iterate through the two matrices simultaneously.
We search for the minimum cost path through the cost matrix while
ensuring that our cost through the run time matrix does not exceed
our run time budget. If there is no path through the run time matrix
that is below our run time budget, then we return that it is infeasible
to execute the query with the given run time. Otherwise, we can
then return the final cost and the number of nodes for each group
of parallel stages by returning the path that we took through the
matrices.

2The proof is trivial and is left as an exercise to the reader.

3.2 Sampling
Because we also report an error bound with both the time-cost trade
off curve and the optimized cluster configuration given a budget,
we introduce the idea of sampling to reduce the error bound to an
amount acceptable to the user.We are able to reduce the error bound
to be arbitrarily small due to the fact that we can always collect
more data to reduce the sample and heuristic uncertainties from
section 2.3.1 and section 2.3.2, respectively, similar to how we can
reduce the estimate uncertainty through repeating the simulation
on the same fixed cluster configuration (section 2.3.3).

Since both outputs create a number of fixed cluster configura-
tions, each with error bounds, we formulate the problem of how to
select fixed cluster configurations to run to obtain a better sample
as the multi-armed bandit problem. We let each of the estimated
run times of the fixed cluster configurations be an “arm” in the
problem and the heuristic uncertainty be the value that we try to
minimize. We solve the multi-armed bandit problem by looking for
the largest heuristic uncertainty.

4 RESULTS
To demonstrate the results of our work so far, we show two sets of
results: the ideal results that we can achieve in section 4.1 and the
simulation results in section 4.2.

4.1 Ideal Results
To demonstrate the performance gains achievable through server-
less computation, we run a Spark script that executes common data
science queries from a Spark tutorial [1] on the NASA HTTP server
data [6]. Although the regular NASA HTTP data is only 200 MB,
we replicated it 25× to reach a size of 5 GB and stored it in AWS
S3. The executed the script on AWS EC2 m5.large (2 CPU and 4 GB
RAM) instances with 2 to 64 nodes. Though the cost of a m5.large
node is $0.09 per hour, we use a cost of $1 per second for ease of
comprehension.

4.1.1 Performance Gains. We investigated the possible improve-
ments of our system through two different approaches. First, we
determined the possible improvements that would arise from im-
proving the fact that we were able to parallelize stages of the task
graph that were able to be parallelized. Then, we investigated the
benefits of dynamically changing the cluster size. We present these
results in table 2. For these experiments, we assume that network
bandwidth would not be a bottleneck and that there would be
enough memory to store the intermediate results on the reaminder
of nodes.
Parallelized Stages. To investigate the effects of parallelized stages,
We simply replicating the cluster configuration to each driver. For
instance, if the fixed cluster provisioning had three nodes, we would
parallelize stages by giving each driver three nodes.

From table 2a, it is clear that we can get performance gains of
between 35% to nearly 50% from simply parallelizing stages that
can be parallelized. Additionally, there is only a 0.1% to 5% cost
overhead that results from the parallelism.

These results are reasonable because the compute time does not
change, as we are still using the same algorithms regardless of the
parallelism. However, we are able to improve the parallelism by
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Value 2 Nodes 4 Nodes 6 Nodes 7 Nodes 8 Nodes 12 Nodes 16 Nodes 32 Nodes 64 Nodes
Fixed Cluster Time (s) 1,480 681 443 381 350 236 192 120 75
Fixed Cluster Cost $2,960 $2,726 $2,661 $2,670 $2,802 $2,837 $3,082 $4,168 $4,800
Naive Serverless Time (s) 767 363 256 213 191 134 109 76 47
Naive Serverless Cost $2,968 $2,742 $2,685 $2,698 $2,834 $2,885 $3,146 $4,296 $5,056
Naive Time Improvement 48% 46% 42% 44% 45% 43% 43% 41% 36%
Naive Cost Improvement -0.2% -0.6% -0.9% -1% -1% -2% -2% -3% -5%

(a) Table shows the time and cost of fixed sized clusters and naively parallelizing the cluster in a serverless setting. It is clear that there are a
lot of performance gains from simply parallelizing the cluster into a serverless setting.

Value 2 Nodes 8 Nodes 64 Nodes
Fixed Cluster Wall-Clock Time (s) 1,480 350 75
Fixed Cluster CPU Time (s) 2,960 2,802 4,800
Fixed Serverless Wall-Clock Time (s) 767 191 47
Fixed Serverless CPU Time (s) 2,968 2,834 5,056
Fixed Wall-Clock Time Improvement 48% 45% 36%
Fixed CPU Time Improvement -0.2% -1% -5%

Value 2 Nodes 8 Nodes
Fixed Cluster Wall-Clock Time (s) 1,480 350
Fixed Cluster CPU Time (s) 2,960 2,802
Fixed Serverless Wall-Clock Time (s) 767 191
Fixed Serverless CPU Time (s) 2,968 2,834

Value Serverless
8 & 12 Nodes

Serverless
8, 64, & 12 Nodes

Optimized
Serverless

Single Driver Time (s) 332 251 997
Single Driver Cost $2,697 $3,531 $2,248
Multi-Driver Time (s) 190 136 593
Multi-Driver Cost $2,734 $3,568 $2,295
Multi-Driver Time Improvement 42% 45% 40%
Multi-Driver Cost Improvement -1% -1% -2%

(b) Table shows the performance gains of single and multi-driver clusters in a serverless setting. It is clear that, by further adjusting the sizes
of the cluster, we can push and expand the Pareto curve beyond the fixed cluster provisioning Pareto curve.

Value Optimized Serverless
Dynamic Cluster

Wall-Clock Time (s) 997

Dynamic Cluster
CPU Time (s) 2,248

Dynamic Serverless
Wall-Clock Time (s) 593

Dynamic Serverless
CPU Time (s) 2,295

Dynamic Serverless
Wall-Clock Time Improvement 40%

Dynamic Serverless
CPU Time Improvement -2%

(c) Table shows the performance gains of single and multi-driver clusters in a serverless setting. It is clear that, by further adjusting the sizes
of the cluster, we can push and expand the Pareto curve beyond the fixed cluster provisioning Pareto curve.

Table 2: These tables show the performance gains that are possible through better parallelism and improved server configura-
tions.
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using more nodes. It is noteworthy that, as the number of nodes
increase, the time improvement decreases and the cost penalties
increase. This is the case because we already are reaching the max-
imum degrees of parallelism, as the number of nodes increase.
Additionally, the overhead for parallelism increases since we have
to pay the overhead for more nodes.
Dynamically Sized. To investigate the dynamic sizing of clusters,
we simulated the changing of cluster sizes over a simulated network
with a 10 Gbit/s network.

For the first two serverless columns in table 2c, we manually
looked for node counts that would give improvements over fixed
sized clusters. For the first column of table 2c, we found that chang-
ing the number of nodes associated with each driver from 8 to 12
nodes in the middle of the query would result in a 12% time im-
provement over only using 7 nodes while only causing the cost to
increase by 1%. However, if we used multiple drivers by replicating
the cluster to each driver, we get an improvement of 50% in run
time and only a 2% increase in cost compared to only using 7 nodes.

On the other hand, if we changed the number of nodes associated
with each driver from 8 to 64 and then to 12, we get a cost savings
of 15% but the run time increases by over 90% compared to 32 nodes,
which is more expensive and slower than 16 nodes. However, if we
used multiple drivers, we see an improvement of over 50% in run
time while getting a 15% increase in cost compared to 16 nodes.

These improvements show that a majority of the improvements
come from the fact that we are able to leverage multiple drivers.
However, there are also significant improvements to be made by
ensuring that ever stage has its optimal number of nodes. Although
the performance improvements of dynamically changing clusters
are small relative to the performance improvements that result
from naively launching multiple drivers, there is still a lot of room
for improvement as these results are from manually determining
which cluster sizes are best for each node.

4.1.2 Budget Optimization. Using the results that we obtained
in table 2a, we optimized a task given a run time budget of 1000
seconds with the results in table 2c. We can see that the dynamic
programming algorithm that we proposed in section 3.1.2 found
a cluster configuration in under 1 second for each stage such that
the cost was over 10% cheaper than any fixed cluster cost while
meeting our run time budget.

Additionally, the result that we found was under the condition
that we were only using one driver. However, even when we man-
ually generalize this to multiple drivers, we find that, though the
run time is sill greater than any of the fixed cluster size run times,
we are able to keep the cost over 10% cheaper than any of the
configurations in table 2.

This result is significant because it shows that by simply adjust-
ing the cluster size to meet each the ideal parallelism, we are able
to push the minimum cost beyond the minimum of any fixed sized
cluster. However, this does come at the expense of taking over 2×
slower than any of the fixed cluster offerings. Although the run
time is increased, it should not overshadow the fact that we are
able to further decrease the cost of running queries.

4.2 Simulation Results
To test our simulations, we use the TPC-DS’s query 9 with a scale
factor of 20 on 4, 8, 16, 32, and 64 AWS EC2 m5n.large (2 CPU
and 4GB RAM) nodes. Using these execution traces, we ran the
Spark Simulator from section 2. Each of these simulations took
approximately 7 seconds on a modern laptop (4 CPUs). However,
we can reduce the run time of the simulations by using a machine
with more nodes for increased parallelism.

It is clear from figure 2 that using the upper bound of the uncer-
tainty discussed in section 2.3 has ensured that the actual run time
is included within the error bounds. However, the error bounds are
also so big such that they are no longer useful.

Furthermore, when the trace has more nodes than regular, we
see, in figure 2a and figure 2b for 64 and 32 nodes respectively, the
Spark Simulations drastically underestimate the duration. This is
the case due to the fact that the Spark Simulator assumes that the
number of tasks scales with the number of nodes if they are equal
in the trace. However, they reach a minimum and cause the run
time to increase when the number of nodes decrease. Although
we do account for this underestimate of the run time in the uncer-
tainty, we overestimate the uncertainty when actually calculating
the uncertainty caused by the task heuristics in equation 6.

However, whenwe use a smaller number of nodes in our previous
execution trace, we notice that, in figures 2c and figure 2d for 16
and 8 nodes respectively, the estimate closely follows the actual
execution run times. However, there is a relatively larger deviation
at 32 nodes. This deviation is caused by two factors: (i) the task
run time normalized by the task size changes with the number of
nodes and (ii) the simulator is better able to estimate clusters with
a large number of nodes. The first factor, the deviation of the task
run time normalized by the task size, can be explained by the fact
that Spark breaks up a query into stages. These stages are divided
whenever Spark is forced to do a shuffle. Thus, for each task, there
is some form of a shuffle. However, as we increase the number
of nodes, there is a point where the shuffle overhead is no longer
trivial relative to the performance gains from increased parallelism,
leading to a longer task run time normalized by task size.

The second factor, the simulator is better able to estimate clusters
with a large number of nodes, is due to the fact that the first factor is
offset by the increased number of tasks. The increase in the number
of tasks increases the likelihood of drawing a sample from the
log Gamma distribution that is from the tail, which represents a
straggler task.

Thus, as long as our initial execution of the query to use as the
trace has a small number of nodes, we are able to get relatively
accurate estimates.

5 RELATEDWORK
Selecting cloud configurations for computation. There already exist
systems that can pick the optimal cluster configuration [7, 13, 16].
These systems, however, determine the optimal cluster configura-
tion for a serverful computation setting. Furthermore, these systems
do not attempt to return the entire time-cost trade off curve. As a
result, these systems have a much more simpler model that is based
on linear regression [16] and Bayesian optimization [7].



Serverless Query Processing on a Budget Conference’17, July 2017, Washington, DC, USA

10 20 30 40 50 60
Estimated Number of Nodes

0

1000

2000

3000

4000

5000

6000

7000

R
un

 T
im

e 
(s

)

Simulated Duration Given 64 Node Trace

Estimate
Actual

(a) Simulated results given a trace from a 64 node cluster.
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(b) Simulated results given a trace from a 32 node cluster.
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(c) Simulated results given a trace from a 16 node cluster.
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(d) Simulated results given a trace from a 8 node cluster.

Figure 2: The plots above show the simulation results with error bounds of one standard deviation. Although we can estimate
the results within the error bounds, the error bound is too big to be useful.

However, there are systems [13] that profile the query execution
environment, similar to our Spark Simulator. Theses systems profile
the query execution environment in a finer granularity rather than
creating models simulating the execution envronment, such as our
Spark Simulator.
Selecting cloud configurations for storage. On the other hand, there
are also systems that can dynamically adapt cluster sizes to opti-
mally meet service-level agreements, such as cost or latency, These
systems include key-value stores, such as Anna [17] that move the
data across different the storage systems (e.g., AWS EBS from AWS
S3) to optimize for cost or latency. However, these systems are de-
signed primarily for data warehousing rather than query execution.
There are also other systems [9, 10] that optimize for both the data
storage and query execution. These systems build only the data
storage layers on the ideas of serverless computation but the query
execution are built on serverful computation environments.

Optimizing query execution costs. Additionally, there are other
systems [11, 14, 18] that focus on the cost of executing queries.
These systems are built to ensure that they minimize the cost of
executing queries either in a database or a mechanical Turk setting.
However, these systems focus in a trade off space other than the
cluster provisioning. They focus on exploring the tradeoffs between
using a parallel database or map-reduce systems [14], trying to
optimally price their jobs to ensure on-time execution in transient
systems [18], or dynamically adjust the price for crowdsourced
queries to ensure on-time completion [11].
Serverless execution. Finally, there has been exploration of building
systems for serverless computation. This developing in the server-
less space lead to the development of new serverless platforms [8?
] or analysis of current serverless platforms [12]. These systems,
however, have focused on either building a map-reduce paradigm
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within a serverless context [15] and improving the communication
overheads that are associated with serverless computation [8].

6 FUTUREWORK
For future work, we plan to improve both the Spark Simulator and
the Serverless Spark Simulator as there is still a lot of room for
improvement on top of the current work presented. This future
work will improve the current system and lead to more performance
gains.

6.1 Spark Simulator Improvements
Overall the Spark Simulator is relatively accurate based on the re-
sults from section 4.2. However, there is still room for improvement
in terms of the task heuristics, the calculation of the uncertainty,
and general improvements.

6.1.1 Task Heuristics Improvements. For the task heuristics, we
plan to improve the task count estimation and the task run time,
normalized by task size, estimation. The task count estimation
currently assumes that the task count will scale with the number
of nodes if they were equal in the trace of the previous execution.
However, from section 4.2, we have seen that this can lead to a
significant deviation and forces us to place a large uncertainty on the
overall query execution time. Through more investigation into the
Spark query planner, we should be able to more accurately estimate
the number of tasks, which leads to a more accurate estimate and
smaller error bounds.

Additionally, the estimation of the task run time can also benefit
from switching over to a Bayesian approach towards fitting the
log Gamma distribution. Although the maximum likelihood estima-
tion that we are currently using is sufficient, a Bayesian approach
towards fitting will allow us to model stages with only one task
and easily combine the data from multiple traces. Using a Bayesian
approach, with a reasonable prior, will allow us to model stages
on the log Gamma distribution even if there is only one data point.
Additionally, by using a prior, we can increase the accuracy of the
model by only adding in the new data without having to fit based
on all the data we have collected so far. We also need to better un-
derstand how the task run times, normalized by task size, changes
when the number of nodes change.

6.1.2 Uncertainty Calculation Improvements. From section 4.2, the
actual run times do fall within one standard deviation of our esti-
mated run times, but our calculation of the standard deviation is
too big to be helpful. Thus, we plan to improve our uncertainty
calculations such that we can apply some simple heuristics to avoid
having to use the upper bound of the uncertainty.

6.1.3 General Spark Simulator Improvements. The most important
line of work that we plan to continue with is being able to estimate
the run time of the query on the entire data set given a trace of
the previous execution on a sample of the data set. Although we
already have the framework in place to handle such an estimate,
Spark’s query planning changes significantly when the amount of
data it handles changes. Thus, there is still a lot of work to be done
in understanding Spark’s internals before we can integrate such a
feature.

6.2 Spark Serverless Improvements
From section 4.1, we have seen that using multiple drivers can
lead to significant improvements. However, our current approach
towards simulating a serverless environment only estimates using
one driver. Thus, extending our current implementation of the
Serverless Spark simulator should lead to significant improvements.

7 CONCLUSION
We have shown that serverless offerings have the potential of being
2× faster than serverful offerings at approximately the same price.
Furthermore, we are developing a model that takes in an arbitrary
query and sampled data to return a time-cost tradeoff profile with
corresponding cluster provisioning. In doing so, it will provide users
an understanding of how their queries will perform at various price
points while simultaneously providing service providers with the
dynamic cluster provisioning for the user’s desired performance.
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